
Лекция 1 

Введение в теорию временных рядов. Случайные процессы. 
Стационарные случайные процессы. 

Данные и модель 
     Термин «временной ряд» используется для обозначения двух объектов: 
1. Совокупность данных (наблюдений), собранных в определённый момент 
времени :      , где T — индексное множество. Обычно  для 
непрерывных наблюдений и  для дискретных наблюдений. В этой 
лекции мы рассмотрим случай  . 

2. Модель, описывающая данные. Для этого мы будем использовать случайный 
процесс (см. определение ниже) . Общая идея: каждый  является 
реализацией случайной величины  . 

     Обратите внимание, что для выборки данных мы обычно имеем  
(мы начинаем наблюдение в момент времени 1 и останавливаем в момент 
времени n), в то время как в качестве модели мы используем , т.е. 
процесс происходит из бесконечного прошлого в бесконечное будущее. 
Интерпретация такова: процесс обычно уже запущен до того, как мы начнём 
наблюдать за выходными данными (до момента времени 1), и он продолжится 
после того, как мы прекратим наблюдение в момент времени n. Техническая 
причина: математическое удобство. 
    
Чем анализ временных рядов отличается от классической статистики?  
Данные зависимы и коррелируют, тогда как в статистике обычно 
предполагается независимость между наблюдениями. Грубо говоря, в 
статистике экспериментатор может повторить эксперимент в тех же условиях и 
независимо. Во временных рядах мы не можем повторить эксперимент, мы 
только наблюдаем за запущенным процессом. С одной стороны, это требует 
более сложных моделей, но с другой стороны, зависимость является 
важнейшим компонентом прогнозирования, одной из центральных тем анализа 
временных рядов. 
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 Определение. Случайный процесс — это совокупность случайных величин 
, определённых на общем вероятностном пространстве  . 

Функции , где , называются реализациями , 
траекториями или также траекториями выборки.  
Мы используем  для обозначения наблюдаемых значений. 

Обозначения   временного ряда как    и       взаимозаменяемы. 

Определение. (Белый шум). Процесс     называется белым шумом, 
если выполняются следующие условия: 

  1.     , 
   2.    , 
  3.    . 

Белый шум часто обозначается   :  

   Обратите внимание, что белый шум может быть (i) зависимым! Например, 
известная модель GARCH, используемая в эконометрических приложениях, 
представляет собой всего лишь белый шум. (ii) Распределение маргинальных 
значений может быть совершенно разным для разных моментов времени. 

Определение. (Конечномерные распределения). Пусть  — 
случайный процесс, и пусть  

 

Тогда конечномерными функциями распределения случайного процесса 
являются функции , где 

 

    Пример . Если случайные величины  независимы, то конечномерные 
функции распределения имеют вид 

 

Теорема Колмогорова утверждает, что если заданы свойства конечномерных 
распределений (согласованность), то такие распределения действительно 
определяют случайный процесс на некотором вероятностном пространстве.  
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Var(Zt) = σ2
Z < ∞, ∀t

EZt = μ, ∀t
Cov(Zt , Zt+h) = 0 ∀t, |h | ≥ 1

Zt ∼ WN(μ, σ2)
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𝒯 = {t = (t1, . . . , tn), t1 < t2 < . . . < tn, n = 1,2,...} .

{Ft( ⋅ ), t = (t1, . . . , tn) ∈ 𝒯}
Ft(x) = Ft(x1, . . . , xn) = P(Xt1 ≤ x1, . . . , Xtn ≤ xn) .
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Ft(x) = Ft(x1, …, xn) =
n

∏
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FXti
(xi) = P(Xt1 ≤ x1)⋯P(Xtn ≤ xn)



Теорема Колмогорова о согласованных конечномерных распределениях 
случайного процесса 
(Kolmogorov consistensy theorem) 

 

     Стационарность 

    В контексте конечного числа случайных величин мы часто используем 
ковариационную функцию, чтобы понять зависимость между ними. Теперь нам 
нужен инструмент, который может расширить концепцию ковариационной 
матрицы для работы с бесконечным числом случайных величин. Это 
автоковариационная функция. 

Определение  (Автоковариационная функция ). Для процесса , для 
которого Var (Xt) < ∞ при каждом t ∈ T, автоковариационная функция γX(··) 
процесса {Xt} задаётся формулой: 

 

Замечание: Обратите внимание, что  . 
Последнее означает (согласно неравенству Коши-Шварца, предложение 2.1.1), 
что . 
   Привлекательным аспектом независимых одинаково распределенных 
последовательностей является то, что их стохастическое поведение остаётся 
стабильным. Теперь мы вводим схему, которая очень часто используется для 
описания определенной структурной устойчивости с точки зрения первых двух 
моментов процесса и ее зависимости. 

Теория временных рядов основана на предположении о стационарности в 
широком смысле,  которую в литературе также называют слабой 
стационарностью,  или стационарность второго порядка. 

Определение (Слабая стационарность). Временной ряд называется 
стационарным, если: 
(i)  
(ii)    (т.е. Математическое ожидаемое значение постоянно) 
(iii)   

! В дальнейшем слабо стационарный временной ряд будем называть 
стационарным. 

Ft1…tk(y1, …, yk) = lim
yk+1→∞

Ft1…tk,tk+1
(y1, …, yk, yk+1)

{Xt , t ∈ T}

γX(r, s) = Cov(Xr, Xs) = E[(Xr − E[Xr])(Xs − E[Xs])], ∀r, s ∈ T .

Var(X ) < + ∞ ⟺ EX2 < + ∞

E |X | < + ∞

{Xt , t ∈ ℤ}

EX2
t < + ∞, ∀t

EXt = m, ∀t ∈ ℤ
γX(r, s) = Cov(Xr, Xs) = γX(r + t, s + t), ∀t ∈ ℤ, ∀r, s ∈ ℤ .



Реальные данные часто не являются стационарными: например, они 
демонстрируют линейный тренд во времени или имеют сезонный эффект. 
Пример. Последовательность iid слабо стационарна (при наличии вторых 
моментов), тогда как модель случайного блуждания не является слабо 
стационарной. 

Замечание. Очевидно,  Следовательно, согласно (iii) 

 

Это означает, что АCF стационарного временного ряда может быть выражена 
как однопараметрическая функция     , где . В этом случае для 
оценки зависимости часто используют автокорреляционную функцию (АCF): 

 

Замечание.  — хорошая и простая мера зависимости.  
Но = 0 обычно не означает, что  не зависит от .  
Для гауссовских процессов некоррелированность подразумевает независимость. 
Вот ещё одно, более строгое понятие стационарности. 

Определение. (Строгая стационарность). Процесс  является строго 
стационарным, если 

 или, что эквивалентно, 

 
  
Другими словами, Процесс   является строго стационарным или  
стационарным в узком смысле, или имеет  стационарность первого 
порядка, если  и  имеют одинаковое распределение 
для всех наборов временных точек    и всех целых чисел . 

Пример. Последовательность независимых случайных чисел строго 
стационарна. 
Пример .  строго стационарна. 
Следующее утверждение весьма полезно: 

Предложение. Предположим, что  строго стационарна и 
   является измеримой по Борелю функцией. Тогда 

  является строго стационарной. 

γX(r, s) = γX(s, r) .

γX(0,s − r) = γX(r, s) = γX(r − s,0) = γX(0,r − s)

γX(h) h = |r − s |

ρX(h) =
γX(h)
γX(0)

=
Cov(Xt+h, Xt)

Var(X )
= Corr(Xt+h, Xt)

ρX(h)
ρX(h) Xt Xt+h

{Xt , t ∈ ℤ}

Ft( ⋅ ) = Ft+h( ⋅ ), ∀h ∈ Z, t ∈ 𝒯

P(Xt1 ≤ x1, . . . , Xtn ≤ xn) = P(Xt1+h ≤ x1, . . . , Xtn+h ≤ xn) .

{Xt , t ∈ ℤ}

(Xt1, …, Xtk) (Xt1+h, …, Xtk+h)
t1, …, tk h

Xt = X, ∀t

{Xt , t ∈ ℤ}
f : ℝ∞ ⟶ ℝ
Yt = f (Xt, Xt−1, …)



Пример . Предположим, что  . Тогда это строго стационарный 
процесс. Определим линейный процесс 

 

Если ряд сходится (в некотором смысле, который будет указан),  то  
строго стационарен. 

Связь между слабой и строгой стационарностью. Если  строго 
стационарна, то распределение  для   одинаково для каждого .  
Более того, любая пара   имеет совместное распределение , 
которое не зависит от t. Следовательно, 

 

не зависит от   и 

 

Следовательно: 
Строгая стационарность  слабая стационарность при условии, что 
последовательность имеет конечные вторые моменты. 

Обратное в общем случае неверно. (Найдите простой контрпример.) 

Существует важный случай, когда слабая стационарность подразумевает 
строгую стационарность. Это случай гауссовского процесса. В этом случае 
слабая стационарность   подразумевает строгую стационарность, поскольку 

  и     имеют одинаковые средние значения и 
ковариационную матрицу, а следовательно, и одинаковое распределение для 
всех  и для всех . 

ПРИМЕЧАНИЕ: В дальнейшем мы будем называть временной ряд 
стационарным, если он слабо стационарен. 

Свойства автоковариационной функции 

Утверждение.   (Элементарные свойства  автоковариационной функции).  

{εt} ∼ IID

Xt = ∑
k≥0

akεt−k = a0εt + a1εt−1 + a2εt−2 + ⋯ = f (εt, εt−1, …)

{Xt , t ∈ ℤ}

{Xt}
Ft Xt t ∈ ℤ

(Xt, Xt+h) Ft,t+h

EXt = ∫ℝ
xdFt(x) = m

t

Cov(Xt, Xt+h) = ∫ℝ ∫ℝ
(x − m)(y − m)dFt,t+h(x, y)

⟹

{Xt}
(Xt1, . . . , Xtn)′￼ (Xt1+h, . . . , Xtn+h)′￼

n = {1,2,...} h, t1, . . . , tn ∈ ℤ



Если  — автоковариационноя функция  стационарного процесса 
, то 

(i) , 
(ii)  
(iii)    

Доказательство. (i) следует из ,  
(ii) следует из 

 
(неравенство Коши-Буняковского (Шварца), и  
(iii) тривиально 

 

Определение. (Неотрицательная определённость, н.о.). 
Действительнозначная функция от целых чисел  называется 
неотрицательно определённой (н.о.), если 

 

Другими словами: матрицы i,j=1 являются н.о. 
Теорема. (Характеристика АCF). Функция  является 
автокорреляционной функцией стационарного процесса , тогда и 
только тогда, когда   чётна и  н.о. 
Доказательство. Предположим, что  — АCovF  стационарного процесса. 
Тогда  чётна (Утверждение , (iii)). Далее 

 

Предположим, что   чётно и н.о(неотрицательно определенная) . Покажем, что 
существует гауссовский процесс с АCovF  . Определим . 
Заметим, что, поскольку   нечётно, мы можем найти многомерный 
нормальный вектор X с . Теперь воспользуемся « Фурье версией» 
теоремы Колмогорова о продолжении: пусть  — характеристическая 
функция нормально распределенного   случайного вектора . 

γX( ⋅ )
{Xt , t ∈ ℤ}

γX(0) ≥ 0
|γX(h) | ≤ γX(0), ∀h ∈ ℤ
γX(h) = γX(−h), ∀h ∈ ℤ .

γ(0) = Var(Xt) ≥ 0

|γX(h) | = |Cov(Xt+h, Xt) | ≤ (Var(Xt+h)) 1
2(Var(Xt))

1
2 = γX(0)

γX(h) = Cov(Xt+h, Xt) = Cov(Xt, Xt−h) = γX(−h), ∀h ∈ ℤ .

κ : ℤ → ℝ

n

∑
i=1

n

∑
i=1

ai ⋅ κ(ti − tj) ⋅ aj ≥ 0, ai ∈ ℝ, ti ∈ ℤ, n ≥ 1

K = ((κ(ti − tj)))n
i, j=1
γ : ℤ ⟶ ℝ

{Xt , t ∈ ℤ}
γ

γ
γ

0 ≤ Var (
n

∑
i=1

aiXti) =
n

∑
i=1

n

∑
j=1

aiajCov(Xti, Xtj) =
n

∑
i=1

n

∑
j=1

aiajγ(ti − tj)

γ
γ Γt = (γ(ti − tj))n

i, j
Γt

Γt = Cov(X)
φt(u)

N(0, Γt)




